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Abstract
This paper describes N, an open source statistical machine translation (SMT) toolkit

for translation models estimated as n-gram language models of bilingual units (tuples). This
toolkit includes tools for extracting tuples, estimating models and performing translation. It
can be easily coupled to several other open source toolkits to yield a complete SMT pipeline.
In this article, we review the main features of the toolkit and explain how to build a translation
engine with N. We also report a short comparison with the widely known M system.
Results show that N outperforms M in terms of memory requirements and translation
speed. N also achieves slightly higher accuracy results.

1. Introduction

This paper describes N, an open source statistical machine translation decoder
and its companion tools. N implements the bilingual n-gram approach to SMT
as described in (Mariño et al., 2006; Crego and Mariño, 2007), which can be seen as
an alternative to the standard phrase-based approach (Zens et al., 2002). N main
features include the use of multiplen-gram language models estimated over bilingual
units, source words and/or target words or any factor decomposition, lexicalized re-
ordering, several tuple (unigram) models, etc.. As for nearly all current statistical ap-
proaches to machine translation, these models are embedded in a linear model com-
bination. N splits the reordering and decoding problems of SMT in two separate
modules, aiming at better tackling each of the problems. However, hard reordering
decisions are avoided by means of using permutation lattices.
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The toolkit implements algorithms for tuple extraction, modeling estimation and
translation. Several algorithms for optimization and evaluation are borrowed from
distinct open source projects, embedded in our toolkit to accurately work with our
translation engine. The decoder takes advantage of multi-threaded architectures,
which are quickly becoming the norm. As far as memory is concerned, major im-
provements have been obtained by replacing the SLM1 interface (used in previous
versions) with the new and much leaner 2 libraries. The toolkit is mainly written
in C++ and Perl, with special attention to clean code, extensibility and efficiency, and
is available under an open-source license. It is mainly developed to run on Linux sys-
tems. Prerequisites to compile the decoder are  and OF3 libraries. Prereq-
uisites to run the entire system are SLM and the minimum error rate training (Och
and Ney, 2002) implementation available in the M4 SMT toolkit. Note that the
toolkit is able to build translation systems starting from a parallel set of word-aligned
sentences and typically employs part-of-speeches to learn rewrite rules. Therefore,
although they are not directly required by our SMT system, a word alignment and
symmetrization algorithms as well as POS taggers for the source and target languages
are needed to perform the entire SMT pipeline.

The toolkit was originally developed at UPC, further extended at LIMSI to its cur-
rent state. It has been successfully used in a number of machine translation evalu-
ations. A detailed description of the system with examples and full documentation
is available in the LIMSI’s web site5. The rest of this paper is organized as follows.
In Section 2, we briefly introduce the bilingual n-gram approach to statistical ma-
chine translation. In Sections 3, 4 and 5, we detail the main components of the toolkit:
training, decoding and tuning. After a short comparison with M in Section 6, we
finally draw conclusions in Section 7.

2. Bilingual N-gram Approach to Statistical MT

The bilingual n-gram approach to SMT has been derived from the finite-state per-
spective (Casacuberta and Vidal., 2004). However, while translation models are im-
plemented as weighted finite-state transducers in the finite-state perspective, our ap-
proach implements translation models as simple n-gram language models. The el-
ementary translation units are tuples, that is pairs of variable-length sequences of
source and target words. Hence, the translation model defines probability over se-
quences of tuples. Training such a translation model requires that (i) the source and

1http://www.speech.sri.com/projects/srilm/
2http://kheafield.com/code/kenlm/
3http://www.openfst.org
4http://www.statmt.org/moses/
5http://ncode.limsi.fr
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Figure 1. Tuple extraction from a word-aligned sentence pair (English-French).

(1)

we    want  perfect translations

parfaites
traductions

des
voulons

nous

we want NULL translations perfect
nous voulons des traductions parfaites

(2)
we want translations perfect
nous voulons des traductions parfaites

target side tuples are synchronized, i.e. that they occur in the same order in their re-
spective languages and (ii) a joint segmentation of the source and target sentences
in tuples is available, which uncovers the tuple boundaries. Given a parallel train-
ing corpus, two pre-processing steps are thus necessary to meet these requirements.
First, word alignments are derived for each sentence pair; based on this information,
a joint segmentation of the source and target sentences in tuples is then produced.
The segmentation in tuples is made (almost) deterministic by enforcing the follow-
ing constraints: (i) no word inside a tuple can be aligned to a word outside the tuple;
(ii) segmentation must respect the order of words as they occur on the target side.
Reordering is permitted in the source side so as to synchronize the source and tar-
get sides of a sentence; and (iii) no smaller tuples can be found without violating the
previous constraints. Figure 1 presents a simple example illustrating the unique tu-
ple segmentation for a given word-aligned pair of sentences. Note that the English
source words perfect and translations have been reordered in the final tuple segmen-
tation, while the French target words are kept in their original order. The resulting
sequence of tuples (1) is further refined (2) to avoid NULL words in the source side of
tuples. Refer to (Crego and Mariño, 2007) for further details on the tuple extraction
process.

The bilingualn-gram language model expects synchronized tuple streams in train-
ing; likewise, it produces synchronized streams in inference. This means that the in-
put source stream has to be reordered prior to translation, so as to reproduce the word
order changes introduced during the training process. In our system, several possible
reorderings of the source are considered in parallel. To this end, the sentence to be
translated is first turned into a word lattice containing a set of promising reordering
hypotheses. It is then pretty straightforward to search this lattice in a monotonous
fashion for the best translation hypothesis. See (Crego and Mariño, 2007) for further
details on word reordering.
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3. Training a N SMT system

In this section, we outline the training process of a N system. Training ba-
sically involves the estimation of the set of models used by the decoder to perform
machine translation. The script training.perl implements the training process, as-
suming source and target files, as well as the corresponding word alignment. It per-
forms the following steps:
Tuple extraction From a word-aligned training bitext, tuples are extracted following

the algorithm sketched in Section 2.
Tuple refinement Tuples with a NULL source side are then discarded by merging the

unaligned target word with either the previous or the next unit (see Figure 1).
Tuple pruning and uncontextualized scores As word alignments are often noisy, we

then filter tuples using a set of simple constraints. A tuple is discarded if it
exceeds a maximum number of source (or target) words (--max-tuple-length);
or a maximum ratio of source/target length (--max-tuple-fert). Additionally,
only the n best translation choices for each tuple source side are considered (--
tuple-nbest). Four scores are then associated with each tuple, corresponding
to conditional probabilities computed as relative frequencies:

Prf(e, f) =
count(f, e)∑
f ′ count(f ′, e)

; Prf(f, e) =
count(f, e)∑
e ′ count(f, e ′)

(1)

where f and e respectively denote the tuple source and target side.
Word-based lexicon weights are also computed for each translation unit:

Plw(e, f) =
1

(J+ 1)I

I∏
i=1

J∑
j=0

Plex(e, f) ; Plw(f, e) =
1

(I+ 1)J

J∏
j=1

I∑
i=0

Plex(f, e)

(2)
where the probability distribution Plex is computed based on counts using the
word alignments.

Bilingual n-gram LM The training bitext expressed in the form of tuples is used to
estimate a standard n-gram language model. It is estimated using SLM, any of
its modeling available options can be used (use --options-bm). When several bi-
texts are available, several LMs can be learned and used in parallel. In this case,
--name-src-bm and --name-trg-bm are used to identify the potentially multiple
language model files.
Tuples are typically built from words in the source and target sides, however,
different factors may be used. i.e. tuples may be built from source POS tags and
target lemmas (use --train-src-bm train.f.pos --train-trg-bm train.e.lem).
Source and target factored training files must match with the alignment file, and
are bound to contain the same number of sentences and words per sentence.
Notice also that our current implementation considers one single factored tu-
ple associated with each original word-based tuple (enabling a straightforward
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implementation of factored language models), even though several different in-
stances may exist. In such case, the most frequent is only considered.

Reordering rules Rewrite rules are automatically learned from the bitext word align-
ments. Following on the example of Figure 1, the rule perfect translations  
translations perfect produces the swap of the English words that is observed for
the French and English pair. Note that such simple reordering patterns can be
modeled using finite-state transducers. Typically, POS tags are used to increase
the generalization power of such rules (use --train-src-rules train.f.pos),
however, any other factor form can be used. Again, the source file used to extract
reordering rules must be parallel to the original source training file.
In order to discard rules derived from noisy alignments, rules are pruned ac-
cording to a length (--max-rule-length) and minimum probability threshold
(--max-rule-cost f). The probability of each rule is estimated as:

P(f fr) =
count(f, fr)∑

f ′∈perm(f) count(f, f
′)

(3)

where f and fr are the original (or left-hand side) and reordered (right-hand
side) sequence of source words (or factors) of the considered rewrite rule, and
perm(f) is the set of permutations of f.

Lexicalized reordering N implements the standard lexicalized reordering (Till-
man, 2004) with four basic reordering types: (m)onotone order; (s)wap with
previous tuple; (f)orward jump; (b)ackward jump. In addition, we also consider
two aggregated types: (d)iscontinuous, corresponding to (b) and (f) and finally
(c)ontinuous, corresponding to (m) and (s). In order to estimate these models,
we count how often each tuple is found with each of the four orientation types
(orientation ∈ {m, s, f, b}), and used the following smoothed maximum likeli-
hood estimators (σ = 1/

∑
o count(o, f, e)):

P(orientation|f, e) =
(σ/4) + count(orientation, f, e)

σ+
∑

o count(o, f, e)
(4)

Source-reordered n-gram LM N-gram language models estimated over the source
words (or factors) of the training corpus are also estimated. Note that the train-
ing source words are first reordered following the tuple extraction process. The
model scores a given source-side reordering hypothesis according to the re-
orderings performed in the training sentences following the word alignments.
Again, the model is estimated as any standard n-gram language model, use
--options-sm and --name-src-unf respectively to set the language model op-
tions and to identify the potentially multiple language model files. See (Crego
and Yvon, 2009) for details.
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Figure 2. Decoding with N.

nous   voulons  des traductions parfaites

nous   voulons  parfaites  des traductions

nous   voulons  parfaites  des_traductions

 we     want     perfect    translations

reordering
  
  

segmentation
  
  

translation

4. Decoding

Figure 2 details the various processing steps taken in our system: source words
are first shuffled in various ways (reordering) so as to reproduce the target word or-
der; source sentences are then segmented (segmentation); translations of each segment
(translation) are produced in the last step. The final translation hypothesis is obtained
by concatenation of such partial hypotheses. Note that multiple choices are consid-
ered at each step, defining the decoding search space.

As introduced in Section 1, our toolkit splits the reordering and decoding prob-
lems into separate modules (detailed below), aiming at better tackling each of the
problems. The first module computes reordering hypotheses producing a word per-
mutation lattice. The word lattice is then traversed in the second step, where segmenta-
tion and translation take place. An intermediate step is introduced after the reordering
module, which only keeps those units than are useful to translate the input sentence.
Permutation lattice and test filtering Sentences to be translated are encoded as word

lattices (use binrules) containing the most promising reordering hypotheses,
so as to reproduce the word order modifications introduced during the tuple
extraction process. Hence, reordering rules are applied on top of the input sen-
tences to be translated. More formally, given an input sentence, f, in the form
of a linear word automaton, and N optional reordering rules to be applied on
f, each of which is represented by a finite-state transducer τi, the resulting re-
ordering lattice f∗ is obtained by the sequential composition of FSTs, as:

f∗ = τN ◦ τN−1 · · · ◦ · · · τ1 ◦ f

where ◦ denotes the composition operation. Note that the sequence of FSTs is
sorted according to the length of the left-hand side (LHS) of the rule. More
specific rules, having a larger LHS, are applied (composed) first, in order to en-
sure the recursive application of the rules. Hence, some paths are obtained by
applying reordering on top of already reordered paths. The applied rules can
be limited to a maximum size of words (use -maxr) and to a maximum cost, or
negative log of the probability estimated according to Equation 3 (use -maxc).
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Once the word lattice is computed, the tuple vocabulary is then filtered for
each input sentence (use binfiltr), removing all tuples but those units whose
source-side matches any of the n-grams appearing in the lattice. The resulting
file contains all the modeling information needed by the decoder to translate
sentences, with the exception ofn-gram language models scores. Tuples (source
and target) size can be limited to a given number of words (use -maxs).

Search As for any statistical MT system, translation are built by searching a vast (the-
oretically infinite) set of translation hypotheses. Search stops when the most
likely hypothesis covering (translating) the entire input sentence is attained (use
bincoder). The algorithm is slightly modified to output n-best (use -nbest) hy-
potheses or the complete search graph (use -ograph).
As in most cases an exhaustive search is unfeasible pruning techniques are re-
quired, aiming at discarding partial hypotheses based on (more or less fair) hy-
potheses comparisons strategies. For N, partial hypotheses are spread over
multiple stacks6 according to the source words they translate (use -s 2J). Each
stack contains hypotheses that translate strictly the same source words.
A well-known heuristic technique then consists in discarding the worst ranked
hypotheses of each stack. This idea can be implemented in several ways, the
most common being known as beam pruning (use -b i), which expands the sub-
set of the i-best stack hypotheses. Another common practice consists in consider-
ing only the i-best translation choices for each source segment (use -t i), what
provides additional computational savings, but typically yields crudest heuris-
tics, as the pruning is only based on non-contextualized translation scores. Hy-
potheses recombination is also implemented by N, another risk-free way to
discard hypotheses. However, the decoder is very often interested in the trans-
lation search graph, for which hypotheses recombinations need to be carefully
recorded rather than discarded.
This organization of the search space ensures that, within a stack, hypotheses
can be compared on a fair basis; this is at the cost, however, of inefficiencies
when the size of the input lattice increases. As each node in this lattice corre-
sponds to one stack of the decoder, we would need up to 2J stacks to process
a lattice encoding all the permutations of a sentence of length J. An alternative
is organize stacks based simply on the number of target words (use -s J). This
solution is more efficient, yet, it may bias the search towards translating first the
easiest parts of the source sentence. This bias can be reduced using estimations
of future costs, a workaround that has not yet been implemented, due to the
complexity of accurately computing these estimations in our architecture.
Finally note that a simple way to increase efficiency when translating multiple
input sentences over multi-threaded architectures consists of running on several

6More precisely: priority lists. We prefered to stick to the usual MT terminology here.
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threads (use -threads i). Up to i sentences, depending on the server architec-
ture and availability, will be translated ’in parallel’.
N’s default policy to handle out-of-vocabulary words (source words never
seen in the training text) is to output the source (unknown) word in the transla-
tion stream. An alternative option is to drop the unknown word (use -dropunk).
The set of translation units used in the one-best translation option can be pro-
duced (use -units). A verbose mode (use -verbose) is also available which
produces an extremely detailed output of the search process.

5. Tuning the Set of Models

As explained above, N scores hypotheses based on a linear combination of
several model scores. In order to obtain accurate translation results, the contribu-
tion of each model in the translation process needs to be tuned. Such optimization is
carried out in our toolkit by the script mert-run.perl, which merely serves as wrap-
per for the MERT toolkit7 implemented in the M toolkit. Once the optimal set of
model weights is found, the script mert-tst.perl performs the translation of test sen-
tences, using the models and configuration used in the optimization process, together
with the optimized set of model weights.

6. A Comparison with M

In this section, we compare the performance of N with that of M (Koehn
et al., 2007), a state-of-the-art SMT system for phrase-based translation models.

The systems are compared on two different French-to-German translation tasks.
The first (news) is a small size data task considering the News Commentary bitext made
available in the Sixth Workshop on Statistical Machine Translation8. A second task (full)
includes additional training data, ending up with a bitext of near four million sen-
tences. Development work (tuning) is carried out for both systems using the new-
stest2010 test set. Performance is evaluated over the newstest2009 and newstest2011 test
sets available for the same translation task.

Thus, both approaches are compared using the same training corpora, target lan-
guage model and word alignments, obtained performing G++9. The TT10

toolkit was used to obtain the POS tags needed by N. Afterwards, a default
configuration of both toolkits is also used to perform training, tuning and decoding.
M performs translation using the default 14 scores, while N employs 2 bilin-
gual n-gram language models. The first is estimated over tuples built from surface

7http://www.statmt.org/moses/?n=FactoredTraining.Tuning
8http://www.statmt.org/wmt11/translation-task.html
9http://www.fjoch.com/GIZA++.html

10http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Table 1. Performance statistics measured for N and M SMT systems.

System Task BLEU #units Speed Memorynewstest2009 newstest2011

N news 13.89 13.83 0.5 54.4 7.7
full 15.09 15.26 7.5 33.9 9

M news 13.70 13.51 7.5 23.1 7.9
full 14.66 14.51 141 14.7 16

word forms, the second with tuples built from POS tags in both sides. Table 1 details
performance measurements obtained for both systems. Translation accuracy is mea-
sured by the BLEU score (Papineni et al., 2002). The total number of units (in millions)
obtained after training (tuples and phrases are limited to a maximum of 6 words) is
displayed in the fifth column. Translation speed is reported in terms of words per
second in the sixth column. Finally, the last column contains an approximation of the
memory (in Mb) used by each decoder.

As can be seen, translation accuracy results are slightly higher for N in both
translation tasks and test sets, although all differences fall within the statistical con-
fidence margin (add ±1.50 BLEU for a 95% confidence level). In terms of data effi-
ciency, N clearly outperforms M: a unique segmentation is used to collect
tuples, yielding a much smaller set of tuples than of phrases. In the case of the full
task, the vocabulary of phrases is 20 times larger than the corresponding set of tuples.
N also outperforms M when considering the amount of memory needed by
the decoder. N needs about half of the memory needed by M (full data task).
Notice that in the case of the small data task, the difference in the amount of memory
needed is very small. This can be explained by the fact that both vocabularies of trans-
lation units are very small compared to the target language model, which account for
most of the memory needs of both decoders. According to translation speed, mea-
sures were taken performing single-threaded translations by both decoders. Results
show that N is nearly twice faster than M.

7. Conclusions

We have described N, an open source statistical machine translation toolkit for
translation models estimated asn-gram language models. It can be downloaded from
http://ncode.limsi.fr. We reviewed the main features that are currently implemented.
Additionally, we carried out a short comparison with the widely known M SMT
system. N showed slightly higher French-to-German translation accuracy results
than M. Our decoder also outperformed M in terms of memory requirements
and translation speed.
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